

## Mark Scheme (Results) Summer 2010

**GCE** 

Further Pure Mathematics FP2 (6668)



Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
Publications Code UA023928
All the material in this publication is copyright
© Edexcel Ltd 2010



## June 2010 Further Pure Mathematics FP2 6668 Mark Scheme

|                    |                                                                                                                                                                        | 1            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Question<br>Number | Scheme                                                                                                                                                                 | Marks        |
| 1(a)               | $\frac{1}{3r-1} - \frac{1}{3r+2}$                                                                                                                                      | M1 A1 (2)    |
| (b)                | $\sum_{r=1}^{n} \frac{3}{(3r-1)(3r+2)} = \frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{11} + \dots + \frac{1}{3n-1} - \frac{1}{3n+2}$ | M1 A1ft      |
|                    | $= \frac{1}{2} - \frac{1}{3n+2} = \frac{3n}{2(3n+2)} $ *                                                                                                               | A1 (3)       |
| (c)                | Sum = f(1000) - f(99)<br>$\frac{3000}{6004} - \frac{297}{598} = 0.00301  \text{or } 3.01 \times 10^{-3}$                                                               | M1<br>A1 (2) |
|                    |                                                                                                                                                                        | 7            |
|                    |                                                                                                                                                                        |              |
|                    |                                                                                                                                                                        |              |
|                    |                                                                                                                                                                        |              |
|                    |                                                                                                                                                                        |              |

| Question<br>Number | Scheme                                                                       | Marks   |
|--------------------|------------------------------------------------------------------------------|---------|
| 2                  | $f''(t) = -x - \cos x,$ $f''(0) = -1$                                        | B1      |
|                    | $f'''(t) = (-1 + \sin x) \frac{dx}{dt}, \qquad f'''(0) = -0.5$               | M1A1    |
|                    | $f(t) = f(0) + tf'(0) + \frac{t^2}{2}f''(0) + \frac{t^3}{3!}f'''(0) + \dots$ | 254 44  |
|                    | $=0.5t-0.5t^2-\tfrac{1}{12}t^3+\dots$                                        | M1 A1 5 |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |
|                    |                                                                              |         |

| Question<br>Number | Scheme                                                                                                                   | Mark  | s   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 3(a)               | $(x+4)(x+3)^2 - 2(x+3) = 0$ , $(x+3)(x^2+7x+10) = 0$ so $(x+2)(x+3)(x+5) = 0$ or alternative method including calculator | M1    |     |
|                    | Finds critical values –2 and -5                                                                                          | A1 A1 |     |
|                    | Establishes $x > -2$                                                                                                     | A1ft  |     |
|                    | Finds and uses critical value $-3$ to give $-5 < x < -3$                                                                 | M1A1  | (6) |
| (b)                | x > -2                                                                                                                   | B1ft  | (1) |
|                    |                                                                                                                          |       | 7   |
|                    |                                                                                                                          |       |     |
|                    |                                                                                                                          |       |     |
|                    |                                                                                                                          |       |     |
|                    |                                                                                                                          |       |     |
|                    |                                                                                                                          |       |     |
|                    |                                                                                                                          |       |     |
|                    |                                                                                                                          |       |     |

| Question<br>Number | Scheme                                                                                                                                                                                                     | Marks         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 4(a)               | Modulus = 16                                                                                                                                                                                               | B1            |
|                    | Argument = $\arctan(-\sqrt{3}) = \frac{2\pi}{3}$                                                                                                                                                           | M1A1 (3)      |
| (b)                | $z^{3} = 16^{3} \left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)^{3} = 16^{3} \left(\cos 2\pi + i\sin 2\pi\right) = 4096 \text{ or } 16^{3}$                                | M1 A1 (2)     |
| (c)                | $w = 16^{\frac{1}{4}} \left(\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})\right)^{\frac{1}{4}} = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) \left(=\sqrt{3} + i\right)$ | M1 A1ft       |
|                    | OR $-1 + \sqrt{3}i$ OR $-\sqrt{3} - i$ OR $1 - \sqrt{3}i$                                                                                                                                                  | M1A2(1,0) (5) |
|                    |                                                                                                                                                                                                            | 10            |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |
|                    |                                                                                                                                                                                                            |               |

| Question<br>Number | Scheme                                                                                                                                                                      | Marks     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5(a)               | $1.5 + \sin 3\theta = 2  \to  \sin 3\theta = 0.5  \therefore 3\theta = \frac{\pi}{6} \left( \text{or } \frac{5\pi}{6} \right),$                                             | M1 A1,    |
|                    | and $\therefore \theta = \frac{\pi}{18}$ or $\frac{5\pi}{18}$                                                                                                               | A1 (3)    |
| (b)                | Area = $\frac{1}{2} \left[ \int_{\frac{\pi}{18}}^{\frac{5\pi}{18}} (1.5 + \sin 3\theta)^2 d\theta \right], -\frac{1}{9}\pi \times 2^2$                                      | - M1, M1  |
|                    | $= \frac{1}{2} \left[ \int_{\frac{\pi}{18}}^{\frac{5\pi}{18}} (2.25 + 3\sin 3\theta + \frac{1}{2}(1 - \cos 6\theta)) d\theta \right] - \frac{1}{9}\pi \times 2^{2}$         | - M1      |
|                    | $= \frac{1}{2} \left[ (2.25\theta - \cos 3\theta + \frac{1}{2}(\theta - \frac{1}{6}\sin 6\theta)) \right]_{\frac{\pi}{18}}^{\frac{5\pi}{18}} - \frac{1}{9}\pi \times 2^{2}$ | - M1 A1   |
|                    | $=\frac{13\sqrt{3}}{24} - \frac{5\pi}{36}$                                                                                                                                  | M1 A1 (7) |
|                    |                                                                                                                                                                             | 10        |
|                    |                                                                                                                                                                             |           |
|                    |                                                                                                                                                                             |           |
|                    |                                                                                                                                                                             |           |
|                    |                                                                                                                                                                             |           |
|                    |                                                                                                                                                                             |           |
|                    |                                                                                                                                                                             |           |

edexcel ....

| Question<br>Number | Scheme                                                                                                                                                                                                                   | Marks                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 6(a)               | Re(z) = 3  Real axis  Vertical Straight line Through 3 on real axis                                                                                                                                                      | B1<br>B1              |
| (b)                | These are points where line $x = 3$ meets the circle centre (3, 4) with radius 5.<br>The complex numbers are $3 + 9i$ and $3 - i$ .                                                                                      | M1<br>A1 A1<br>(3)    |
| (c)                | $ z-6  =  z  \Rightarrow \left  \frac{30}{w} - 6 \right  = \left  \frac{30}{w} \right $ $\therefore  30 - 6w  =  30  \Rightarrow \therefore  5 - w  =  5 $ This is a circle with Cartesian equation $(u-5)^2 + v^2 = 25$ | M1 M1 A1 M1 A1 (5) 10 |
|                    |                                                                                                                                                                                                                          |                       |

| Question<br>Number | Scheme                                                                                                                                                                           | Mark        | S         |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 7(a)               | $\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} \text{ and } \frac{dy}{dz} = 2z \text{ so } \frac{dy}{dx} = 2z \cdot \frac{dz}{dx}$                                           | M1 M1       | A1        |
|                    | Substituting to get $2z \cdot \frac{dz}{dx} - 4z^2 \tan x = 2z$ and thus $\frac{dz}{dx} - 2z \tan x = 1$                                                                         | M1 A1       | (5)       |
| (b)                | $I.F. = e^{\int -2\tan x dx} = e^{2\ln \cos x} = \cos^2 x$                                                                                                                       | M1 A1       |           |
|                    | $\therefore \frac{\mathrm{d}}{\mathrm{d}x} \left( z \cos^2 x \right) = \cos^2 x \ \therefore z \cos^2 x = \int \cos^2 x  dx$                                                     | M1          |           |
|                    | $\therefore z \cos^2 x = \int \frac{1}{2} (\cos 2x + 1)  dx = \frac{1}{4} \sin 2x + \frac{1}{2} x + c$ $\therefore z = \frac{1}{2} \tan x + \frac{1}{2} x \sec^2 x + c \sec^2 x$ | M1 A1<br>A1 | (6)       |
| (c)                | $\therefore y = \left(\frac{1}{2}\tan x + \frac{1}{2}x\sec^2 x + c\sec^2 x\right)^2$                                                                                             | B1ft        | (1)<br>12 |
|                    |                                                                                                                                                                                  |             | 12        |

| Question<br>Number | Scheme                                                                                                                                                            |       |     |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|
| 8(a)               | Differentiate twice and obtaining $\frac{dy}{dx} = \lambda \sin 5x + 5\lambda x \cos 5x \text{ and } \frac{d^2y}{dx^2} = 10\lambda \cos 5x - 25\lambda x \sin 5x$ | M1 A1 |     |  |
|                    | Substitute to give $\lambda = \frac{3}{10}$                                                                                                                       | M1 A1 | (4) |  |
| (b)                | Complementary function is $y = A\cos 5x + B\sin 5x$ or $Pe^{5ix} + Qe^{-5ix}$                                                                                     | M1 A1 |     |  |
|                    | So general solution is $y = A\cos 5x + B\sin 5x + \frac{3}{10}x\sin 5x$ or in exponential form                                                                    | A1ft  | (3) |  |
| (c)                | y=0 when $x=0$ means $A=0$                                                                                                                                        | B1    |     |  |
|                    | $\frac{dy}{dx} = 5B\cos 5x + \frac{3}{10}\sin 5x + \frac{3}{2}x\cos 5x \text{ and at } x = 0 \frac{dy}{dx} = 5 \text{ and so } 5 = 5A$                            | M1 M1 |     |  |
|                    | So $B = 1$                                                                                                                                                        | A1    |     |  |
|                    | So $y = \sin 5x + \frac{3}{10}x\sin 5x$                                                                                                                           | A1    | (5) |  |
| (d)                | "Sinusoidal" through O amplitude becoming larger  Crosses x axis at $\pi \ 2\pi \ 3\pi \ 4\pi$                                                                    | B1    |     |  |
|                    | To T                                                                                                                          |       | (2) |  |
|                    |                                                                                                                                                                   |       | 14  |  |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA023928 Summer 2010

For more information on Edexcel qualifications, please visit <a href="www.edexcel.com/quals">www.edexcel.com/quals</a>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH